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Opinion: We should do this for all GMMs (not just subduction)



Background
* Vs30 is a convenient way to represent site stiffness in GMMs

* there are important period-dependent, region-specific effects not carried
by Vs30

* In NGA-W?2, these have been considered though a basin depth term —in
which amplification is modified according to the depth to bedrock, 72.5;
reflects long-period amplification for deep sites (which CB14 note are
different in Japan vs. Calif.).

* In Cascadia, this has been included in some GMMs through considering the
difference between typical amplification (for the same Vs30) in Seattle
region vs. Japan (e.g. Atkinson and Boore, 2003; Atkinson and Adames,
2013)

* In the east there have been recent proposals to include an analogous term
— based on peak frequency, where peak frequency is inversely related to
Z2.5 (e.g. Hashash et al., 2016; Kwak and Stewart, 2017; Hassani and
Atkinson, 2017); similar in concept but considers shorter periods having
significant response at many eastern sites (and also Japan)



The importance of peak frequency
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How this plays
out In Japan vs.
Cascadia

* Nisqually vs. Geiyo M6.8
in-slab events at h~55 km,
recorded on NEHRP C sites
(Atkinson and Casey, 2003
BSSA)

 Cascadia/Japan high at low
frequencies (factor of 1.5)

 Cascadia/Japan low at high
frequencies (factor of 2)
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Cascadia Factors: (Cascadia basin sites relative to Japan shallow sites;
applied to those GMMs based on Japan data, for NBCC2015)

Table: Cascadia/Japan site factors:
Geiyo Vs. Nisqually | AB2003 GMM Recommended Cascadia
Freq.(Hz) | Atkinson&Casey | Atkinson&Boore | Multiplicative Factor (log)
0.1 1 (0.000 log units)
0.2 1.10 (0.04 log units)
0.33 1.23 1.20 (0.079 log units)
0.5 1.47 1.55 1.51 (0.179)
| 1.08 1.00 1.04 (0.017)
2.5 1.16 0.83 1.00 (0.000)
3.33 0.81 (-0.091)
5 0.71 0.50 0.60 (-0.222
10 0.53 0.35 0.44 (-0.357)
25 0.35 0.44 (-0.357)
PGA 0.45 0.50 (-0.301)
PGV 1.00 (0.000)
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How this plays out
the east

e there is an important high-
frequency site response not
captured by Vs30 scaling

* Peak frequency of response
depends on depth to bedrock
(right; from Braganza et al.,
2016): fp~50/Z

* Far right shows responses for
sites from regression of CENA
data (NGA-East plus) (Atkinson
et al., 2015 BSSA GMM for
rock, “weighted mean NGA-E
models)

* Developed model (near right)
includes both Vs30 and peak
frequency (from
Hassani&Atkinson, 2017 BSSA)
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If we average amplification over
many sites, and consider Vs30 as
the sole predictive variable, we
get very little average
amplification as a function of
vs30 (blue line at left, less
amplification than Seyhan and
Stewart, 2014 WNA model)



CENA Vs30 model

* Site amplification scales more mildly with Vs30 in
CENA than it does in WNA (e.g. Seyhan and
Stewart, 2014) — especially at higher frequencies

 at right is amplification model based just on Vs30
from Hassani and Atkinson (2017), derived from
NGA-East data; suggests lesser site amps in CENA
vs WNA (SS514)

* Scaling with Vs30 from HA17 in agreement with
Stewart et al., 2017 report, also Hashash et al.,
2016 sims
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Impact of modeling CENA
with Vs30 model only

* After removing the CENA Vs30
effects, there is a structure in
the residuals that can be seen
if you rearrange to plot
residuals vs. peak frequency
(this is like a basin term, but at
higher freq)

* The Vs30-based model is
missing peak response over a
significant frequency band at
about 60% of sites (especially
glaciated) by > factor of two.
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and Atkinson, 2017)



CENA model should include both Vs30

and peak frequency (or depth to
bedrock, Z2.5 or 71.5)

 Amplifications at right (from Hassani
and Atkinson, 2017) are relative to
Vs=1500 m/s

e Contrary to model using just Vs30, if we
consider the frequency of response, we
find CENA site amps are generally larger
than the SS14 WNA model over
significant frequency ranges (not
smaller)

* CENA site amps especially high for
glaciated sites

e So we should have aZ1.5 or Z2.5 term
(or equivalently fpeak) for CENA

* This accords with results/conclusions of
Hashash et al. 2016 report — and also
the recommendations of the Stewart rpt
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Amplification model for CENA, assuming V3, as the main site-effects

parameter and f ., as the secondary parameter, for different Vg3 and f,., values. (a,b)
V 53¢ scaling effects for asite with f,,., = 3 Hz for three different Vg3, values (300, 500,
and 800 m/s). (c,d) The effects of different f,.,x values (1, 2, 5, and 10 Hz) for a site
with Vo = 500 m/s. The SS14 model for western North America is shown for com-

parison. The color version of this figure is available only in the electronic edition.
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Impact of fpeak on total sigma, versus Vs30 (binned)
(total sigmal from CENA data for sites having fpeak, if only Vs30 effects are

removed)

* The extra increment
in sigma attributable
to fpeak depends on
Vs30 and frequency

* This term could be
considered to
account for neglect
of fpeak

(e.g. add the
difference between

black and purple lines,

~0.1 to 0.5 In units)

Sigma (In units)

14

1.2

08

06

04

0.2

Total Sigma (all NGA-East + SOSN data), removal of Vs30 term only, data having fpeak

low-freq (0.5 to 1 Hz)
max(1.2-0.0005,0.6)
0.5 Hz
O O 1Hz
i 2 Hz
O—0O 32Hz
© \| 5 Hz
0~ N 0—0 10 Hz
\ /? 0O
Q.. 040\ M
O N/ Rey o
BEAVIR /\ 7
,," T \ Q
5 / d
o 500 1000 1500 2000

Vs30 (binned)



Conclusions

* Additional terms beyond Vs30 are warranted in GMMSs in most
regions (probably all)

* In some regions (like the east) the additional terms are more
important than Vs30

e Cascadia region may have areas where a basin term is important
(Puget Sound, Fraser Delta), and areas where a peak-frequency term
is important (shallow soils over glaciated rock)

* In using/modifying GMM:s it is important to adjust for the appropriate
(and dominant) regional site effects



Recommendations

Solution 1- a term in Z2.5 (or equivalently fpeak) could be added to all GMMs

 Add a 72.5 or fpeak term to GMM:s in all regions: this could be a basin term to
amplify lower frequencies in some cases (e.g. Cascadia) - or a peak frequency term
to amplify higher frequencies in other cases (e.g. CENA; where Z2.5=~50/fpeak)

* |f fpeak is measured (or Z2.5 known) then a site response term in fpeak can be
added (e.g. Hassani and Atkinson empirical or Hashash et al. theoretical)

* |f it is known that there is no fpeak or basin effect (e.g. site with rock-like profile)
then we do not need to add a Z2.5 term.

* |f fpeak is unknown then an approximate additive term to account for average
effects should be applied (e.g. a default amplification term)

Solution 2 (higher sigma)

* |f thereis no Z2.5 or fpeak term added to CENA GMMs, then a higher sigma is
warranted for soil sites in CENA to account for high phiS2S — and a strong caution
should be placed in Commentary that some sites have strong peak response
exceeding Vs30 model effects by more than a factor of two.
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